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AbslraeL We study the crilical behaviour of the SU(N) generalization of the one- 
dimensional Hubbard model with arbitrary degeneracy N .  Using the integrability of this 
model by Bethe ansatz we are able to compute the spectrum of the low-lying excitations 
in a large but finite box for arbitrary values of the electron density and of the Coulomb 
interaction. This information is used to determine the asymptotic behaviour of correlation 
functions at zero temperalure in the presence of extemal fields lifting the degeneracy. 
The critical evponents depend on the system parameters through an N x N dressed 
charge matrir implying the relevance of the interaction of charge- and spindensity waves. 

1. Introduction 

The physics of highly correlated electron systems has long been the subject of 
extensive studies in condensed matter physics. Recently, the non-Fermi liquid 
character of low-dimensional systems has attracted renewed interest in one- 
dimensional realizations of these systems where large quantum fluctuations lead to 
Luttinger liquid behaviour [l]: the correlation functions decay as power laws at zero 
temperature, the exponents depending on the system parameters such as electron 
density, magnetization (or applied magnetic field) and strength of the interaction. 

In this context exactly soluble models can provide a variety of new insights, in 
particular when used together with the general results on quantum critical behaviour 
in one spatial dimension as provided by the theory of conformal invariance [2-4]. 
Here the universality class of the quantum system is completely determined by a single 
dimensionless number-the so-called central charge c of the underlying Virasoro 
algebra. This number c as well as the dimensions of the operators present in the 
theory can be extracted from analytical results for the spectrum of low-lying states in 
finite geometries. In this language, Luttinger liquids correspond to a central charge 
c = 1, the dependence of the anomalous dimensions on the system parameters is 
through a single dimensionless number-the coupling constant of the corresponding 
Gaussian model. 

t e-mail: frahm@~aetor.itp.uni-hannover,de 
2 e-mail: as@thp.uni-koeln.de 
5 Work performed within the research programme of the Sonderfonehungsbereich 341 (K6ln-Aachen- 
Julich). 
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The situation described above is the generic behaviour of one-dimensional (1D) 
quantum systems with a single critical degree of freedom, as realized in spin-4 
chains or systems of spinless fermions. The situation becomes more complicated 
for systems where two or more massless excitations are possible: the lack of Lorcntz 
invariance (the corresponding Fermi velocities differ in general) prevents the direct 
application of the predictions of conformal field theory and the interacting nature of 
the system complicates the factorization of the problem into independenl ones for each 
critical quasi-particle mode. On the other hand the exact results on the finite-size 
scaling of the low-lying energies available for Bethe ansatz soluble models suggests 
a resolution of this problem: the spectrum is that of a multi-component Gaussian 
model. In analogy to the analysis of conformal invariant theories the universality 
class of a system with N massless collective excitation modes is determined by N 
dimensionless numbers c,-reducing to the central charge in the scalar case. The 
anomalous dimensions are functions of the system parameters not through a single 
coupling constant but through an N x N matrix of dimensionless numbers-the so- 
called dressed charge matrix. This behaviour has been found in a large number of 
1~ quantum systems, including certain integrable spin-chains with S > f [5,6], and 
the Hubbard 17-91 and t-J models of correlated electrons, the latter both at the 
integrable supersymmetric point J / t  = 2 [lo] and away from integrability Ill]. 

Most of the integrable models in this list are solved by a hierarchy of Bethe 
ansxtze [12]: the first one introduces a set of wavenumbers describing the phase 
of the wavefunction and determining the spectrum, the others are necessary for the 
wavefunctions to show the symmetry corresponding to a particular representation of 
the permutation group. This allows for the solution of certain systems with various 
choices of internal degrees of freedom, e.g. an SU(2)-spin in the Hubbard model. 

On the level of the Bethe ansatz equations-which have to be solved for the 
calculation of the spectrum of the model-this opens the possibility for studying a 
generalization of the Hubbard model which, instead of spin-; electrons, describes 
interacting fermions carrying an SU(N)-spin index. A Hamiltonian for this degenerate 
Hubbard model has been proposed previously by various authors [13-17]: 

Here, the Fermi operator cia ( c i s )  creates (annihilates) an electron at site j with 
spin index s E 11,. . . , N )  and njs = cf,cj, is the corresponding number operator. 
The real parameters h ,  may be considered as generalized magnetic fields. P projects 
onto the subspace of states having at most two electrons at each site. 

This projection is crucial for the applicability of the Bethe ansatz to this model 
as it prevents scattering processes involving three or more electrons on one site [18]. 
For spin-; electrons these configurations are excluded automatically by the Pauli 
principle-the operator P does not impose any additional restrictions. However, 
as was realized later, the projectors do not solve the problem of many-electron 
scattering processes: the wavefunctions resulting from the analysis do nol satisfy 
this constraint. In fact, in the limit U i 0 the Bethe ansatz equations for the 
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SU(N) model describe a system of free fermions with N components which is in 
contradiction to the correlations introduced in equation (1.1) through the projection 
operators P. Only recently the question of which model is solved by the Bethe ansatz 
was addressed again by Schlottmann [I91 who has shown that in the continuum limit 
the scattering phase shifts as found from the Bethe ansatz equations are those of 
particles interacting via a potential of the form 1/ sinh’ r, where T is the particle 
distance in suitably chosen units. This indicates the need for a long-range interaction 
dynamically excluding three-electron configurations for finite U. However, the correct 
form of the interaction for the lattice model has not yet been found. 

There exist various limits in which the problem stated above can be resolved [19]: 
in the continuum limit and for small densities or U >> 1 in the lattice model the 
contribution of unwanted configurations becomes negligible, so the Hamiltonian of 
the form (1.1) describes the system reasonably well. 

However, despite the problem outlined above, it appears to be worthwhile to study 
the the SU(N) lattice model defined by the Bethe ansatz equations given below-even 
beyond these limiting cases: 

(i) the SU(N) model allows phenomena not found in the N = 2 model to be 
studied (from previous studies the system is known to undergo a Mott transition at a 
f i i t e  value of the Coulomb interaction [13,20,21]); 

(ii) an extensive study of the properties of this model provides the necessary 
information as one tries to construct the corresponding Hamiltonian; 

(iii) exact results, e.g. for the behaviour of correlation functions in models of this 
type, can be used to check predictions derived from asymptotic 1/N expansions [22]. 

In the present paper we investigate the asymptotic behaviour of correlation 
functions in the degenerate Hubbard model. 

Our paper is organized as follows. In the following section we shall introduce the 
Bethe ansatz equations describing electrons carrying an SU(N)-spin index and give a 
qualitative discussion of the resulting excitation spectrum. In section 3 the results for 
the finite-size corrections to the energies of low-lying states as well as their relation 
to the critical exponents are given in terms of the N x N dressed charge matrix. In 
section 4 the integral equations for this matrix are solved in the zero-field case and 
the operator dimensions are computed as a function of the electron density and the 
strength of the interaction. They are shown to reflect the full SU(N)-spin symmetry 
present in this case. Furthermore, we discuss the variation of the operator dimensions 
as the Mott transition mentioned above is approached. These results are applied to 
the computation of the critical exponents for some correlation functions of interest. 
Finally, in section 5 we consider states where the SU(N) symmetry of the ground 
state is broken by magnetic fields coupling to the various flavours of the internal 
degree of freedom as in (1.1). In the limiting case of strong coupling we discuss the 
dependence of the dressed charge matrix and the critical exponents on these external 
fields. 

2. The Bethe ansatz solution of the SU(N)  Hubbard model 

The Bethe ansatz wavefunction which solves the Schriidinger equation for the SU(N) 
generalization of the Hubbard model on a chain of length L for a total number N, 
of electrons is characterized by the momenta k, ( j  = 1 , .  . . , N,)  and N - 1 sets 
of rapidities A t ’  (s = 1,. . . , N - 1; a = 1,. . . , M a ) .  Imposing periodic boundary 



1466 

conditions on the wavefunction leads to Bethe ansatz equations [13,14,17] 
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Here we have set MO = Nc,  M N  = 0 and 

parity of the numbers N c ,  M p ) :  

= sin kj. 
The quantum numbers Ij and J?) are integer or half-integer depending on the 

Energy and momentum of the model in a state corresponding to a solution of (2.1) 
are completely determined by the momenta kj: 

N, N 

E = - 2 c c o s k j  4- p N c  - h , N ,  

j = 1  ' j = 1  3=1 o=l ' 
where N ,  denotes the total number of electrons with orbital index s. 

In the following we consider the Bethe ansatz equations (2.1) of the SU(N) 
Hubbard model coupled to generalized magnetic Eelds h,  as in (1.1). In the 
thermodynamic limit ( L  - CO, with N,/L, M , / L  kept constant) the equations 
(2.1) corresponding to the ground state can be transformed into a set of coupled 
integral equations for the densities p, (k )  and p,(X) of the parameters kj and A?), 
respectively, 

1 kQ A ,  
& ( A )  = - J dkK,(X - sink)p,(k) - A / d p  I ( , (X  - p ) p , ( p )  

2n -bo  2n -AI  
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with A, = 0. The kernels Kl,2(z) of these equations (2.4) are given by 

K l ( x )  = 2 u / x 2  + U' K z ( x )  = 4 u / x 2  + (2.)'. (2.5) 

The wlues of the parameters k, and A,, . . . , A N - l  are determined through the 
normalizations 

A. 

-A* - ,  -A. 
n, =/A'- '  dXp,-l(X) -/ dXp,(X) (s = 1, ... , N - 1) (26)  

where n, = N J L  is the total density of electrons and n, = N , / L  = ( M s - l  - 
M , ) / L  is the density of electrons with index s. Furthermore we have set p, pc 
and A, = kut. 

The ground-state energy per lattice site is 

which may alternatively be expressed in terms of the dressed energy 

ko 
= kl,, dk eC( k). 

Here ~ , ( k )  is the solution of the system of coupled integral equations 

The bare energies are from (2.3) 

t In the following we shall adopt the convention that an index '0' stands for 'c'. 
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The dressed energies (2.9) obey the conditions 
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sc(ICo) = 0 e S ( A a )  = 0. (2.11) 

The ground state at half-filling (n, = 1) and with vanishing fields h, shows for 
N > 2 an interesting behaviour which has not been found in the case of the standard 
Hubbard model (N = 2). This has been noticed independently by Schlottmann [20] 
and one of the authors in [21]. For U > U,  one finds ko = ?r and for U < uc one 
has ko < T. Here the critical value U, is determined through the implicit equation 

dkGN(sink;u,) = 27~ 

where GN(z;  U )  in terms of the digamma function +(z) is given by 

1 
N u  G N ( z ; u ) = - R e  

For N = 2 we have uc = 0 (see figure 1) as already shown by Lieb and Wu [U]. 

Figure 1. Dependence of the critical value uc on 
the degeneracy N as obtained fmm (2.123. Note 
that for U > uc the system is in an insulating phase 
whereas for U < uc it shows metallic behaviour .25 .5 

l / N  (for n, = 1). 

The excitation spectrum in zero fields has also been studied in [21] using an 
extension of the method developed in [24,25] and in [20]. One finds N - 1 
gapless spin excitations with soft modes with wavenumbers 2sPF (s = 1,. . . , N - 1, 
PF = (n /N)n , )  and so-called particle-hole excitationst. These also are gapless 
and do exist only for IC, < T, i.e. for n, < 1 or nc = 1 and U < uC. In [21] 
also, excitations corresponding to doubly occupied sites have been studied. These are 
described by complex momenta k* satisfying sink* = X =! iu and have a finite gap 
(at least for n,  = 1 and U > uc). 

The special structure of the ground state for n, = 1 leads to interesting properties 
of the model. For U > uc, the only possible charge-carrying excitations are those 
involving complex momenta. As these excitations have a gap the system is in an 
insulating state. For U < uc, particle-hole excitations become possible. These 
excitations may carry a current and so the system is in a metallic phase. This shows 
the existence of a Mott transition at the critical value uc of the Coulomb repulsion 
U. The transition is also reflected in the behaviour of other physical quantities, e.g. 
the charge susceptibility x, and the Fermi velocity uc [20,21]. As the gap to the 

t For a discussion of the zero-field excitation spectrum for N = 2, see e.g. [24] and references therein. 



Exponents of rhe degenerate Hubbard model 1469 

excitations with double occupations does not vanish in the limit U ', U, the value 
of the gap to the charge-carrying shows a discontinuity at U = U*. We may thus say 
that the transition is of 'first order'. 

In the limit U -, CO at nc = 1 the SU(N) Hubbard model becomes equivalent 
to the SU(N) Heisenberg chain [26]. This equivalence generalizes the well 
known relation between the regular (N = 2) Hubbard model and the Heisenberg 
antiferromagnet 

3. Finite-size corrections and conformal properties 

As shown in the preceding section the degenerate Hubbard model supporb gapless 
excitations in general. Thus we may apply the concepts of conformal field theory 
to determine the asymptotic behaviour of the correlation functions, e.g. the critical 
exponents. 

First we calculate exactly the finite-size corrections to the ground state energy and 
the energies of the excited states. This can be done by a straightforward extension of 
the calculation for the case N = 2 [7]. The results can be expressed in terms of the 
N x N dressed charge matrix 

. (3.1) 4 E c c ( n " )  t C I ( A 1 )  " '  L , N - I ( A N - I )  
t d k " )  < I l ( A l )  ' . '  EI.N-l(AN-l) z = (  

E N - I , ~ ( ~ )  E . ~ - i , i ( A i )  . . .  < N - I , N - I ( A N - I )  

The elements of 2 can be obtained from the dressed charge functions <,,(A) which 
obey a system of coupled integral equations similar to (2.9). For T = c ,  1, . . . , N - 1 
we have 

The finite-size scaling behaviour of the ground-state energy is found to be 

N - 1  E o - L ~ m = - - ~ c v s  7r 

s=o 
6L (3.3) 
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with the Fermi velocities of charge and spin excitations 
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&:(Ab) (s = 1 , .  . . , N - 1). 
1 1 

2TP B (11,) vo 'Uc = aka) vg = 
2XP A k" 1 

(3.4) 

Energies and momenta of the excitations scale as 

E ( A M , D )  - E ~  = - - A M ~ ( z - ~ ) ~ v z - ~ A M  L 4  
N-1  

2= 1' 

2= [ S=O *=O r=O 

+DTZVZTD+ C v , ( N : + N ; ) ]  

(3.5) 
*=O 

N - 1  N - l  s 

P(  A M ,  D )  - Po = L AMT D + 
V = diag( vc , vl, . . . , v N - l ) .  

Here N:, N$ are positive integers and A M  and D are vectors characterizing the 
excited state under consideration. PF,, are the Fermi momenta for electrons with 
spin index s. For the ground state in the thermodynamic limit we have AM, = 0, 
D,  = 0 (s = c,  1,. . . , N - 1). For an excited state A M  has integer componcnrs 
denoting the change of the total number of electrons and the number of clcctrons 
with index s with respect to the ground state. D, are integer or half-odd integer 
depending on the parities of the A M 8 .  Due to (2.2) we have 

( N$ - N;  )] t 2 D,PF, ,+~ 

A M s - 1  mod1 ( s  = 1,. . . , N - 1) (3.6) 2 D, = 

with AMo = AN, and A M N  = 0. 
In general, all velocities v,  are different In this case the results (3.3) and (3.5) 

may be interpreted in terms of a semidirect product of N independent Virasoro 
algebrast. All these Virasoro algebras have central charge c, = 1. For vanishing 
fields h,  all magnon velocities u l r  . . , , v,,,-~ are equal [20,21] and we have a 
semidirect product of a c = 1 Gaussian theory-reflecting the U(l)  symmetry of 
the charge sector-and a c = N - 1 Was-Zumino-Witten theoty-reflecting the 
SU(N) symmetry of the spin sector. 

Comparing (3.5) with the predictions of the conformal field theoly [3,4] 

t See [8] and references therein for a more detailed discussion of this point. 
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one obtains expressions for the conformal dimensions A$ of the primary fields in 
terms of the dressed charge matrix. Requiring that all dimensions are positive we 
find 

2A$ = ( ( Z T D ) ,  & ; (Z- 'AM) , )*  + 2N: (3.8) 

which, in general, depend on the system parameters. In the following section we 
shall show that for vanishing fields the A: (s = 1 , .  . . , N - 1) are functions of the 
components of A M  and D only, whereas A$ depends on the strength U of the 
Coulomb repulsion and the density n, of electrons. 

We now make further use of the results of conformal field theory to write down 
the correlation functions for primary fields as 

The correlation functions of the physical fields consist of a sum of terms (3.9). In 
the following we shall study correlators of the form (Uj( l )U:(0))  where U is given 
in terms of c and ct.  ?b find the asymptotic behaviour of the correlator one has 
to expand U in terms of the conformal fields. This is not possible in general, 
but the explicit form of 0 allows for an identification of the quantum numbers 
M,, M , ,  . . . , M N - ,  of the intermediate states. Therefore the leading term in thc 
asymptotic expansion of (Oj(t)O:(0)) can be obtained from (3.8) through minimizing 
with respect to the D ,  satisfying (3.6). 

4. Critical exponents for vanishing fields 

In the absence of magnetic fields it is easiIy seen that A? = CO for all r. This allows 
the elimination of A-dependent quantities from the Bethe ansatz integral equations by 
Fourier transformation. From equation (3.2) we obtain for the k-dependent entries 
of the dressed charge matrix 

where we have introduced a new variable z = sin k/u. 

we obtain 
The solution for z, = <,(z,,) is obtained by iteration for small values of z,, where 

zc Y 1 + ICN(@ 1)]/7rrU = 1 - [y + $ ( l / N ) ] / N 5 ~ z ~  for z,, << 1. ( 4 4  

For zu >> N a perturbative scheme 1271 based on the Wiener-Hopf method can be 
applied, giving 

zC z f i ( i  - ( N  - 1 ) / 2 ~ ~ , , )  for Z~ B N .  (4.3) 

For intermediate values of z,, the integral equation (4.1) is easily solved numerically. 
The dependence of zC on the density and the strength of the Coulomb interaction is 
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shown in figure 2 for some values Of N. In addition to the interpretation of the zc as 
measure of the reordering of the Fermi sea due to the interaction when an elcctron 
is added there exists a direct relation to physical obscrvables: it can be expressed as 
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(4.4) 2 zt  = rvcncIc 

in terms of the compressibility K = - ( l / L ) a L / a p  of the elcctron gas (p being the 
pressure). 

U 3 

2 

I 

.5 I 

U ?  

.5 I 

2 

1 

.5 1 

lk 

Figure 2. (a) Lines of constant zg for vanishing magnelic fields in the ncu 
plane for N = 2. The drawn lines correspond to zc = 1.0904, 1.1679, 1.2237, 
1.2627, 1.2892, 1.3088, 1.3234 (corres onding to 10 = 0.4,0.8,. . . ,Z.S). Note that 
zC - 1 for U + 0 and zc -+ v'% for U 3 m with n, arbitrary, n, - 0 
with U arbitraw, and n, - 1 with U > U<. (b) As in (a) but for N = 4, 
is = 1.1241,1.2445,1.3473.1.4318,1.5013,1.5585,1.6~2. (c) As in (a) but for N = 6, 
ic = 1.1316,1.2630,1.3799,1.4812,1.5689,1.6453,1.7122 (d) As in (a) but for N = 8, 
zc = 1.1344,1.2701,1.3928,1.5012,1.5973,1.6830,1.7601. 

As in the regular Hubbard model ( N  = 2) [I one can employ the Wiener-Hopf 
method to compute the remaining elements of the dressed charge matrix (3.1) yielding 

0 0 ... 0 

(4.5) 
ZN 

Note that the symmetric ( N  - 1) x ( N  - 1) block 2, of this matrix is completely 
determined by the SU(N)-spin symmetry of the system: this symmetry is manifest in 
the kernel of the integral equations and allows for the reduction of the corresponding 
marrix Wiener-Hopf problem to N - 1 scalar ones [28,29]. The latter are soluble by 
quadratures and one obtains closed expressions for the matrix elemem of 2;': 

z, =cos--. N 
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The square of 2;' is the Cartan matrix for the Lie algebra SU(N): 

Using the properties of the dressed charge matrix we find for the critical exponents 

For vanishing magnetic field the magnon velocities U? (r  = I , .  . . , N-1)  are identical, 
hence only the quantities 

N-1 N-1 

A: = aAN:CNAN, + D~C&'D, f A N : .  D ,  + 2 2A: = 2 N,' 
?=l r=l  

where 

( A N , ) , = A M , - ( ( N - v ) / N ) A N ,  (Do),.= D, ~ 7 1 ,  ..., N - 1  
(4.8) 

appear in the exponents describing the asymptotic behaviour of the correlation 
functions. Note that they are independent of the quantity zc incorporating the 
dependence of the anomalous dimensions on electron density and strength of the 
interaction. They are completely determined by the SU(N) symmetry of the zero 
field ground state .and, in fact, of the same form as the exponents characterizing the 
SU(N)-symmetric critical vertex models and spin chains [28,29] (the difference being 
the possibility of fractional values for the elements of A N , ) .  

Now we are able to study the asymptotic behaviour of correlation functions 
of interest. For the field-field correlation function we have AN,  = 1 and 
AM = (1,. . . , l,, 0,. . .). The corresponding values of D can be read from equation 
(3.6), the contribution at wavenumber IC = PF = ( r / N ) n C  arises from the choice 
D, = $(&vs - 6r,s+l) for any s giving 

Hence, the singularity of the momentum distribution function at the Fermi point 

(Ck,sctk,a) pFIDl (4.10) 

is characterized by the exponent 

a = 8/ [ (2N) ' ]  -I- 110 - 1 / N  (4.11) 
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Figure 3. Expnenl P characterizing lhe Fermi-point singularity of the momentum 
distribution function as function of lhe electron density for N = 2,4 ,6 ,0 ,m (bottom 
lo top) at zero field for two MIUS of U. 

where 8 = 22: varies between 2 and 2N as U decreases from CO to 0. Hence, 

O =  a ( u  -+ 0) < a < CY(U + CO) = 112- 1fN + 1 / 2 N 2  (4.12) 

showing the Luttinger liquid character of the degenerate Hubbard model at non-zero 
interaction. Numerical data for the exponent a are presented in figure 3. 

For the density-density correlation function (ns(z , t )na(0))  - we find 
contributions at wavenumbers k = 2mPF ( m  = 1 , .  . . , N) with exponents 

2Af  = 2 ( m / 2 N ) %  2 A $  = m ( N  - m ) / N  (4.13) 

arising from the choice A N ,  = AM, = 0 and D, = 6r,N-m. In addition, 
there are k = 0 terms decaying as x - ~  asymptotically. They are genemted by the 
marginally relevant secondary operators in the conformal family of the unit operator 
(i.e. A N ,  = A M ,  = 0 and D, = D, = 0 but N: or one of the N$ in equation 
(4.7) equal to 1)t. 

From the discussion in the preceding section it is clear that the above statements 
are valid for any value of the coupling constant and for any filling with nc < 1. For 
n, = 1 two cases have to be discussed separately: 

(i) For n, = 1 and U < U,  the system is in a metallic phase (described by 
k, = ICo( U )  < ?r in the Bethe ansatz equations). The critical exponents of the system 
are given by (4.7) with zc being a function of the Coulomb interaction through (4.1). 
The number zc decreases from to 1 as the strength of the Coulomb interaction 
is varied from 0 to U,. It is possible to expand the integral equations for the density 
p , ( k )  in the neighbourhood of the Mott transition U < uc to determine ko( U) from 
(2.6). For N -t CO the resulting expressions simplify, giving U, = [13] and 

(4.14) 

The same square-root singularity in the Coulomb coupling u-but with a different 
numerical prefactor-is found near U = uC for finite N .  Through (4.7) it also 

t After completion of this work we became awaR of related studies by Kawakami [30] who independently 
obtained the exponents a ( u  -+ CO) (equalion (4.12)) and A$(u - m, m = 1) (equation (4.13)). 
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appears in the critical exponents near the Mott transition, e.g. the exponent cy of the 
momentum distribution (4.11) varies like 

(4.15) 

as U approaches uc from below (for N 3 00). 

(ii) For U > U, with one particle per site the system is in an insulating state, hence 
charge carrying excitations develop a gap. Excitations in the spin degrees of freedom, 
however, continue to be massless at zero temperature. The critical properties of 
this state can be described along the l i e s  of the discussion above. For n, = 1 and 
U > uC we have k,  = T. Hence, the k-dependent quantities disappear from equation 
(3.2) leaving a system of N - 1 coupled integral equations for the spin components 
of the dressed charge matrix. The expression for the conformal dimensions are of 
the form (3.8) and depend on the applied magnetic fields. The correlation functions 
for states corresponding to critical excitations are given by (3.9). These are exactly 
those found in the SU(N)-generalization of the Heisenberg spin chain (see e.g. [5]). 
Note that (3.6) implies that the momentum of the intermediate state is shifted by T 

for states with odd AM,. 

5. Magnetic field effects in the strong coupling regime 

Non-zero magnetic fields h,  in (210) lead to finite values of the parameters As 
through (2.11). This effect in turn leads to a general dependence of the elements 
of the dressed charge matrix on the system parameters U, n, and all of the fields. 
Only at and beyond certain critical values of the fields where one or more bands are 
completely depleted the integral equations simplify to some extent so that analytical 
results may become available (for a discussion of the N = 2 case see 181). A more 
detailed study of the magnetic field dependence of the dressed charge matrix becomes 
possible in the strong coupling limit [9]. As in the SU(2) Hubbard model the Bethe 
ansatz integral equations (2.4), (2.9) and (3.2) describing the system simplify in the 
limit U i 00 (see also [16]). In this limit the k-dependent quantities can be eliminated 
which allows to study the effect of magnetic fields on the critical exponents in more 
detail. Upon rescaling of the variables X / u  - X one obtains to leading order 

(v = 1,. . . , N - 1) where A" = A,,, 0 and 

e:") = e;") - [sin2k0 - 2kU]/[rru(l + XZ)]6,,, (5.2) 

The integration kernels fCi are obtained from equation (2.5) by setting U = 1. The 
dressed energy of the charged excitations is 

E:") - (hc)/ ( l  + XZ)6,,,. 

E , ( k )  = -2(cosic-c0s~").  (5.3) 
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Similarly, one finds reduced integral equations for the spin components of the 
density 

and of the dressed charge matrix (r, s = 1 , .  . . , N - 1): 

The other elemenls of the dressed charge matrix are found to be 

z, = 1 Z,,=O r = l ,  .... N - 1  

The expression for Z,, can be rewritten using the symmetry of the kernel in (5.5) to 
obtain a simple relation to the densities of electrons with SU(N) index s: 

(5.7) 

(since ns = n,/N for h,  0 this reproduces the corresponding entrics in equation 
(4.5) in the U - CO limit). 

For small magnetic fields (corresponding to large but finite values of the AV) one 
can employ the Wiener-Hopf method to the integral equations (5.1) for the dressed 
energies together with condition (2.11) to compute the field dependence of the AT 
(g;(w) is given in equation (A.9)): 

sin?rrs/Nsin?rst/N N-I  s i n ~ e x p ( + ) =  -?rA 
N s , t = l  ( ,  sin ns /2N g;(-irr/iV) 

An analogous computation yields the actual field dependence of the Z,, in equation 
(5.7). For h,  h, we find 

(5.9) 
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where s< (s,) is the smaller (greater) of the integers r, S .  

From (2.10) the bare energies E$') are known to be proportional to the applied 
magnetic fields, hence the A? in (5.8) show the logarithmic dependence on the fields 
found previously in the isotropic Heisenberg spin chain [31] and the SU(2) Hubbard 
model [9]: 

A T  -Wh,/h)  (5.10) 

where h is the typical strength of the fields h,. As is known from the SU(2) Hubbard 
model this strong dependence on small applied fields shows up in the field dependence 
of the anomalous dimensions since they contain terms proportional to l / A s  as the 
leading corrections in their spin components AS ( r  = 1,. . . , N - 1) (see equation 
(4.7)) and is related to a non-analytic field dependence of the magnetic susceptibility 
in this system [16] and the SU(N) Heisenberg model 1321. This is in contrast to the 
charge components Ay of the conformal dimensions where (5.9) implies a linear 
dependence on the applied fields. 

For sufficiently large fields (h Y O(h,)) the system saturates in a state with all 
electrons occupying states in the band(s) with the lowest magnetic energy. This final 
state depends on the particular choice of the magnetic fields h,  in (1.1). In the 
following we shall consider two possible eases explicitly; generalization to others is 
straightfonvard. 

One natural interpretation of the SU(N)-index is that of an orbital quantum 
number, i.e. taking the electrons in the r t h  band as having spin S f 1 - r where 
N = 2s + 1. In this picture the coupling to the magnetic fields should be through 
Zeeman terms giving 

h, = -(S + 1 - r )  h 1 < r < N = 2 s  + 1 (5.11) 

for the fields in (1.1) or 

e:") = h - (hc)/ ( l  + X 2 ) 6 , ,  (5.12) 

for the bare energies (5.2). In this interpretation it is straightforward to see that the 
quantity h, introduced in equation (5.2) is simply the large-u limit of the critical 
magnetic field beyond which the ground state of the system is ferromagnetically 
ordered (i.e. all electrons are in the band with spin-S). For h > h, only excitations 
with AMr = 0 ( r  = 1. .  . , N - 1) are gapless. By construction, the corresponding 
correlation functions are those of free spinless electrons. 

Another possible interpretation of the N bands in the degenerate Hubbard model 
is that of degenerate bands of spin-fi electrons. Tb be specific let us choose the 
electrons in the first N, bands as having spin T and the ones in the remaining 
N- = N - N, bands as carrying spin 1. This choice gives 

h, = -h/2 for 0 < r < N, h, = h / 2  for N, < r 4 N (5.13) 

for the coupling of a physical magnetic field to the system corresponding to 

(5.14) 
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for the bare energies (5.2). Again the system saturates at large fields: for 

H Fruhnt and A Schadschneider 

h > h ,  = hC/2N,(Nt + (1)/N+) - dJ(t)) (5.15) 

the ground state of the system is determined by filled bands for the t-electrons with 
densities n, = nJN+ while the N- bands of 1-electrons are empty. This state 
shows SU(N+) spin symmetly, excitations involving creation of electrons in one of 
the I-bands are massive. The gapless excitations and corresponding critical exponents 
are given by the U -3 co-limits of the expressions in the preceding section: the dressed 
charge matrix for the critical degrees of freedom is of the form (4.5) with N replaced 
by N+ and zc = 1. 

Appendix 

In this appendix we briefly list some mathematical results which are helpful in the 
solution of the Wiener-Hopf equations in sections 4 and 5. The Wiener-Hopl method 
itsell has been reviewed in the appendk of [9]. 

In the reduction of the matrix Wiener-Hopf problem to scalar ones one has to 
diagonalize a tridiagonal ( N  - 1) x ( N  - 1) Toeplitz matrix of the type 

where I and y are real numbers. In terms of A, = y i 
determinant of T 

one finds for the 

det T = A y  - A N / X +  - A -  (W 

where we assumed IyI # I l l .  Using this result the eigenvalues t ,  of T are easily 
found to be 

t j  = 2( y - -I cos(j*/N)) (A.3) 

with corresponding eigenvectors 

Thus T is diagonalized by the matrix U E O ( N  - 1) with elements 

U,, = m s i n ( j / . r r / N ) .  
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The inverse of T can be written as follows 

T-' = l/(det T) S ( k 6 )  

where the elements of the matrix S are given by 

S.  31 = a j , a N - j ,  &+ aj = A', - x i /x ,  - A-. ('4-7) 

Here again j ,  = min ( j ,  1 )  and j ,  = max ( j ,  1) .  
The main step of the Wiener-Hopf procedure is the factorization of the Fourier- 

transformed kernel into a product of two functions g* which are analytic in the upper 
and lower complex w-plane, respectively. In the derivation of (5.8) we have used 

2e-IWl(coshw - cos ( s r r /N) )  = g:(w)g;(w) ('4-8) 

with 

= s,( -w)  

('4-9) 

where r denotes the gamma function. Note that the asymptotic behaviour of the 
functions defined in ( k 9 )  is simply limu+m g:(w) = 1. 

Finally we want note to that in the derivation of (4.6) we do not need the explicit 
form of the corresponding kernel K(w) into factors &(U).  One only needs the 

&due to the symmetry property G*(w) = (?-(-U)- 
= (see also [31]). 
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